A Rough Set Approach for Generation and Validation of Rules for Missing Attribute

نویسندگان

  • Renu Vashist
  • M. L Garg
چکیده

Data mining has emerged as most significant and continuously evolving field of research because of it‘s ever growing and far reaching applications into various areas such as medical, military, financial markets, banking etc. One of the most useful applications of data mining is extracting significant and earlier unknown knowledge from real-world databases. This knowledge may be in the form of rules. ̳Rule generation‘ from raw data is a very effective and most widely used tool of data mining. Real life data are frequently imperfect, erroneous, incomplete, uncertain and vague. There are so many approaches for handling missing attribute values. In this paper we use the most common attribute value approach i.e. replacing all the missing attribute values by most frequently occurring attribute value and thereby completing the information table. Subsequently, we find the reduct and core of the complete decision table and verify that the reduct and core find by our method is same as the reduct and core find by ROSE2 software. Thereafter we generate the rules based on reduct. Our results are validated by conducting the same rough set analysis on the incomplete information system using the software ROSE2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

A New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)

Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...

متن کامل

Three Approaches to Missing Attribute Values: A Rough Set Perspective

A new approach to missing attribute values, based on the idea of an attribute-concept value, is studied in the paper. This approach, together with two other approaches to missing attribute values, based on "do not care" conditions and lost values are discussed using rough set methodology, including attribute-value pair blocks, characteristic sets, and characteristic relations. Characteristic se...

متن کامل

A Comparative Study on Decision Rule Induction for incomplete data using Rough Set and Random Tree Approaches

Handling missing attribute values is the greatest challenging process in data analysis. There are so many approaches that can be adopted to handle the missing attributes. In this paper, a comparative analysis is made of an incomplete dataset for future prediction using rough set approach and random tree generation in data mining. The result of simple classification technique (using random tree ...

متن کامل

An Improved Comparison of Three Rough Set Approaches to Missing Attribute Values

In a previous paper three types of missing attribute values: lost values, attributeconcept values and “do not care” conditions were compared using six data sets. Since previous experimental results were affected by large variances due to conducting experiments on different versions of a given data set, we conducted new experiments, using the same pattern of missing attribute values for all thre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012